Abstract

Climate-related factors (e.g. environmental energy, water availability and climatic seasonality/variability) and habitat heterogeneity have long been considered as the main drivers of species diversity on a broad spatial scale. However, it is controversial whether the above environmental factors can explain observed diversity patterns in varied communities such as invertebrate taxonomic group, especially mollusks. Moreover, there are until now few systematic assessments of the relative roles of different factors in determining the patterns of mollusk species diversity in monsoon-dominated regions. Here, we depict variations in terrestrial mollusk diversity based on a dataset comprising 282 assemblages collected from surface soils along an ~800-km climatic gradient from subtropical to warm temperate and mid-temperate regions in northern China. The results show that mollusk species diversity increases significantly from ~3–4 species to ~17–19 species when annual temperature and precipitation increase up to ~12 °C and ~700 mm, respectively; however, at or above these values the rate of increase is reduced. These indicate that the relationships between mollusk species diversity and climatic factors are nonlinear. Statistical analysis suggests that water availability (relative humidity) and temperature seasonality (January temperature and annual temperature range) dominate the observed pattern of mollusk species diversity. Moreover, habitat factors such as vegetation condition and soil types were also important in determining mollusk species diversity. They may be an indirect reflection of the effects of monsoonal water-energy dynamic on mollusk communities. Our results suggest that more attention should be paid to water availability and temperature seasonality in predicting future biodiversity changes, especially in the environmentally stressed northwestern part of the East Asian monsoon region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.