Abstract

FT-30, a typical aromatic polyamide membrane, is formed by interfacial polycondensation (IP) reaction between m-phenylenediamine (MPD) and benzene 1,3,5-tricarboxylic acid chloride (TMC) monomers. To investigate its microscopic characteristics, we performed an atomistic molecular simulation using the hybrid MC/MD reaction method modified to allow intercellular chemical bonds stretching over the periodic boundaries. Starting with appropriate monomer model systems, we succeeded in making membrane models by simulating a succession of condensation reactions. Through an analysis comparing our calculation results for the degrees of polymer cross-linking (DPC) and the composition ratios to the experimental results, we clarified the MPD/TMC mixing ratios in the near-surface active (NSA) and interior active (IA) regions associated with the reaction mechanism of IP. Further, we executed water diffusion simulations using the membrane model of the IA region and showed the calculated values of the total mass density of the hydrated membrane and the partition coefficient K to be in good agreement with the experimental ones. In conclusion, the present computationally modeled polyamide membrane has sufficient fidelity to the actual membrane and should be considered a stable spatial structure in the local equilibrium state under a nonequilibrium stationary state of permeation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.