Abstract

Single-impact tests and molecular dynamics (MD) simulations are performed to evaluate effects at energy- and momentum-variable impact phenomena at two distinct scales and velocity ranges. Therefore, a carbon steel in various heat treatment conditions is examined using the single impact test to evaluate the influence of varying energies and momenta on the deformation behavior. Experimentally found material parameters “momentum-sensitivity”ps(E) and “minimum deformation momentum”p0(E)are introduced for a better mathematical description of impact phenomena or deformation processes using energy and momentum. Empirical laws are found, where the minimum deformation momentum is a linear function of the impact energy (E) and the deformation at low momenta is an inverse function of E, which has significant influence on the deformation. The proposed empirical law are recalculated via down-scaled molecular dynamics simulation (rigid indenter impacting on an iron block) and is found applicable for macro and nano scale impact phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.