Abstract

Samples made of iron powder with addition of 1.5 and 2% of molybdenum and 0-0.6% of boron were compacted at 600 MPa and sintered at 1200°C for 60 minutes in hydrogen atmosphere after mixing in Turbula mixer. The samples were deformed in a tensile test till rupture. The effect of molybdenum and boron on topography of fracture is discussed. It is noted that the sintering mechanism changes upon addition of boron particles into Fe-Mo alloy. The fractures of the studied samples were observed by means of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The addition of Mo influences the change of fracture to ductile type. The type of fracture is brittle with Mo and borides segregating to grain boundaries. In the alloys with low concentrations of molybdenum boron induces brittle transgranular fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.