Abstract
AbstractA series of comb‐like polymers, poly{2,5‐bis[(4‐octadecyloxyphenyl)oxycarbonyl]‐styrenes{ (P‐OC18s) with different molecular weights (Mn) and low molecular weight distributions have been successfully synthesized via atom transfer radical polymerization. The phase behaviors have been investigated by a combination of techniques including differential scanning calorimetry, polarized optical microscopy, wide‐angle X‐ray diffraction, and temperature‐variable FTIR spectroscopy. One hand, phase behaviors of the alkyl tails were strongly influenced by the mesogens of polymers, leading to the poor packing of the alkyl tails and the low melting. The other hand, the liquid crystalline phase structures of polymers were found to be strongly Mn dependent. The samples with Mn ≤ 4.6 × 104 formed a smectic phase in low temperature and an isotropic phase in high temperature. The samples with Mn ≥ 5.2 × 104 displayed a reentrant isotropic phase, which was separating the smectic phase and columnar nematic phase. Meantime, the experiment results showed that the glass temperature and the transition temperature from smectic phase to isotropic phase both slightly increased with the increase of MnS; however, the transition temperature from isotropic phase to columnar phase sharply decreased with the MnS improved. The reappearance of isotropic phase is due to the competing between the driving force of the enthalpy and the driving force of the entropy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.