Abstract

The influence of polymer molecular weight on the mechanical properties of aliphatic polyketones was investigated. The molecular weight varied from 100,000 to 300,000 g mol −1. The crystallinity was found to be independent of polymer molecular weight, as was the glass transition temperature. The yield strength and stiffness of the aliphatic polyketone terpolymers were also found to be independent of molecular weight. The post yield behaviour showed strong dependency on polymer chain length. The draw stress was increased significantly with higher molecular weight material. The impact resistance was increased with molecular weight, resulting in ductile fractures with large energy consumption upon fracture. The brittle-to-ductile transition temperature was lowered with increasing chain length. The difference in material deformation was linked to the higher mechanical connectivity and more stable post yield behaviour of the polymers with an increased molecular weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.