Abstract
We have studied the dynamics of photoexcited electronic states for structure-specific alkanethiolate-based self-assembled monolayers (SAMs) on Au(111). At the even numbers of methylene units (n) in the alkylene chain, a molecular distortion due to strong interference between the end substituents is expected. Focused on this geometrical perturbation, here, we examine the influence of the molecular distortion on the quenching process of photoexcited quaterthiophene (4T)-terminated alkanethiolate SAMs (4TCnS-SAMs) for even n (= 6 and 8). The occupied and unoccupied electronic levels of 4TCnS-SAMs are specified by ultraviolet photoelectron spectroscopy (UPS) and two-photon photoemission (2PPE) spectroscopy, respectively. The quenching rate, i.e., lifetime (τn), of the photoexcited state for 4TCnS-SAMs is evaluated by the time-resolved 2PPE measurements. In comparison to the previously reported results for odd n [J. Phys. Chem. C 119 (2015) 7400–7407], we find that τn for even n is not in the middle of those for n ± 1 but close to that for n − 1, i.e., τ6 ≈ τ5 and τ8 ≈ τ7, in contrast to the negligible difference in the electronic levels for all n. By the examination of molecular configurations using scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy (IRAS), we elucidate the weak n dependence of the 4T group orientation and the n-parity-dependent conformation change of alkylene chain. We conclude that the n parity dependence of τn results from a structural distortion of the aliphatic alkylene chain, in which a skewed alkylene chain appears for even n, rather than the electronic modification of the aromatic 4T groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.