Abstract
The interaction among moisture content, solvent loss and glass transition temperature is relevant for processing of spray-dried pharmaceuticals, since the glass transition temperature determines the application range of a compound. Conventional Differential Scanning Calorimetry (DSC) does usually not allow to separate glass transitions from common kinetic effects like evaporation or crystallization. Based on classical DSC methods, the IsoStepTM method allows the independent determination of heat capacities and kinetic effects, and thus, the separation of kinetic effects from effects arising from heat capacity changes. This technique is used to separate glass transition and evaporation processes, and to find the relation between moisture content and glass transition temperature for a pharmaceutical sample based on a modified Gordon–Taylor equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.