Abstract

Short circuit (SC) strength of a power transformer is influenced by its winding clamping pressure. The required level of clamping pressure is selected at the design stage based on the maximum allowable SC current level of the transformer. Progressive loss of clamping pressure is a common problem in power transformers. Shrinkage and fading of the stiffness of solid insulation due to thermal degradation are the most common causes of this problem. It has also been identified that changes in the moisture content and repetitive compression cycles on pressboard during high current faults tend to change the winding clamping pressure. This study aims to investigate the effects of moisture and compression cycles on winding clamping pressure through a set of laboratory experiments and finite element analyses. Thickness change and compressive stress-strain curves of pressboard were measured under different moisture conditions. The results were then used to calculate changes in winding geometry and clamping pressure of a 100 kVA three phase, disc type transformer winding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.