Abstract

Moisture content (MC) influences substance transformation during composting and the function of exogenous microbial agents. Unsuitable MC could cause leaching, nutrient loss, and secondary contamination. In this study, chicken manure composting with varied MC (45–61%) was conducted under functional microbial agent inoculation to explore the optimum condition for composting and the potential mechanism. Due to the enhanced decomposing, nitrosation, and nitrification effect lead by the functional microorganism, treatment with the optimal MC (53%) exhibited the highest composting temperature (61 °C) and longest high-temperature period (15 days), achieving a final carbon-nitrogen ratio (C/N), humic acids and fulvic acids ratio (HA/FA), and NH4+-N/NO3−-N at 19.20, 2.00, and 0.93, respectively. After composting, the total nitrogen (TN) increased by 13.01–22.10% in the treatments with microbial agent inoculation compared with original stack, while it decreased by 7.76% in control. The highest nutrient (5.63%, 5.63–14.20% higher than the other composts) and better product safety (11.43–23.58% higher seed germination than others) were observed in treatment with MC at 53%, exceeding the Chinese national standard for organic fertilizer. Obviously, under optimum MC, microbial agent augmentation lead to high quality and safe compost products after a short composting period (25 days) without any leaching, which suggested an efficient way to promote the recycling and recovery of husbandry waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.