Abstract

Growth (fresh weight) and morphogenesis (production of leaves, roots and shoots) of mint (Mentha sp. L.) and thyme (Thymus vulgaris L.) shoots were determined under atmospheres of 5%, 10%, 21%, 32%, or 43% O2 with either 350 or 10,000 µmol mol–1 CO2. Plants were grown in vitro on Murashige and Skoog salts, 3% sucrose and 0.8% agar under a 16/8-h (day/night) photoperiod with a light intensity of 180 µmol s–1 m–2. Growth and morphogenesis responses varied considerably for the two plant species tested depending on the level of O2 administered. Growth was considerably enhanced for both species under all O2 levels tested when 10,000 µmol mol–1 CO2 was added as compared to growth responses obtained at the same O2 levels tested with 350 µmol mol–1 CO2. Mint shoots exhibited high growth and morphogenesis responses for all O2 levels tested with 10,000 µmol mol–1 CO2. In contrast, thyme shoots exhibited enhanced growth and morphogenesis when cultured in ≥21% O2 with 10,000 µmol mol–1 CO2 included compared to shoots cultured under lower O2 levels. Essential oil compositions (i.e. monoterpene, piperitenone oxide from mint and aromatic phenol, thymol from thyme) were analyzed from CH2Cl2 extracts via gas chromatography from the shoot portion of plants grown at all O2 levels. The highest levels of thymol were produced from thyme shoots cultured under 10% and 21% O2 with 10,000 µmol mol–1 CO2,and levels were considerably lower in shoots grown under either lower or higher O2 levels. Higher levels of piperitenone oxide were obtained from mint cultures grown under ≥21% O2 with 10,000 µmol mol–1 CO2 compared to that obtained with lower O2 levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.