Abstract

Increased transmural pressure in the pulmonary arterial bed may reduce vascular input impedance and reduce hydraulic power linked to pulsatile blood flow. Vascular impedance and pulsatile hydraulic power (Wp) levels of isolated perfused rabbit lungs were compared after similar rises of pulmonary arterial pressure (PAp), induced either by vasoconstriction or by left atrial pressure (LAp) elevation. Resulting Wp levels were significantly smaller after vasoconstriction than LAp elevation. Wp showed a minimum level at physiologic PAp (about 20 cm H2O) irrespective of the cause of PAp elevation. Pressure pulse wave reflection coefficient (see article) was calculated for control and test situations, and was found to be approximately doubled after vasoconstriction. Only minor changes in (see article) were found after LAp elevation. Accordingly, moderate vasoconstriction (resulting PAp approximately 20 cm H2O) caused a backward traveling pressure wave of high amplitude, appearing in counter-phase to the forward pressure wave at the input site. The total pressure wave amplitude was thereby markedly lowered, resulting in a reduced Wp level. We assume that this effect of moderate vasoconstriction may be one reason for the existence of vascular smooth muscles in the pulmonary arteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.