Abstract

Missense variation in genomes can affect protein structure stability and, in turn, the cell physiology behavior. Predicting the impact of those variations is relevant, and the best-performing computational tools exploit the protein structure information. However, most of the current protein sequence variants are unresolved, and comparative or ab initio tools can provide a structure. Here, we evaluate the impact of model structures, compared to experimental structures, on the predictors of protein stability changes upon single-point mutations, where no significant changes are expected between the original and the mutated structures. We show that there are substantial differences among the computational tools. Methods that rely on coarse-grained representation are less sensitive to the underlying protein structures. In contrast, tools that exploit more detailed molecular representations are sensible to structures generated from comparative modeling, even on single-residue substitutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.