Abstract

The discrete element method (DEM) coupled with computational fluid dynamics (CFD) is a powerful tool for exploring the detailed behaviors of dense particle–fluid interaction problems such as fluidized beds. Coarse-graining models have been proposed to decrease the computational cost by increasing the model particle size. In this study, we examine the influence of the model particle size and the spatial resolution on the average size and number of bubbles in coarse-graining DEM-CFD calculations of bubbling fluidized beds. Calculation results indicate that the bubble size is scaled by the model particle size if parameters are following similarity laws defined in a particle scale, as well as the geometric similarity of the whole system is maintained. The usage of coarse spatial resolution increases the bubble size and decreases the number of bubbles. The countervailing influence of the model particle size and the spatial resolution in a practical coarse-graining scenario results in nearly the same bubble size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.