Abstract
Climate models generally underestimate the pronounced warming in the sea surface temperature (SST) over the North Atlantic during the mid‐Pliocene that is suggested by proxy data. Here we investigate the influence of the North Atlantic cold SST bias, which is observed in many climate models, on the simulation of mid‐Pliocene surface climate in a series of simulations with the Kiel Climate Model. A surface freshwater‐flux correction is applied over the North Atlantic, which considerably improves simulation of North Atlantic Ocean circulation and SST under present‐day conditions. Using reconstructed mid‐Pliocene boundary conditions with closed Bering and Arctic Archipelago Straits, the corrected model depicts significantly reduced model‐proxy SST discrepancy in comparison to the uncorrected model. A key factor in reducing the discrepancy is the stronger and more sensitive Atlantic Meridional Overturning Circulation and poleward heat transport. We conclude that simulations of mid‐Pliocene surface climate over the North Atlantic can considerably benefit from alleviating model biases in this region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.