Abstract

The present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda-lime glass) and consequences on co-evaporated Cu(In,Ga)Se2 (CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0·75 and 11·25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as “porosity”. The structural and morphological properties of co-evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open-circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.