Abstract

Polycarbonate composites containing multiwalled carbon nanotubes (MWCNTs, 0.2-2.0 wt%) were melt mixed in small scale at different conditions of screw speed and mixing time to vary the specific mechanical energy (SME) input between 0.4 and 4.0 kWh/kg. Next to the electrical properties of compression molded plates and the MWCNT macrodispersion also the nanotube length and shape were analyzed. For this, the matrix of the composites with 0.75 wt% MWCNT loading was dissolved and the remaining nanotubes were investigated using TEM. It was found that with increasing SME input the number of remaining CNT agglomerates decreases. The MWCNT length decreased from initially about 1.4 micrometers towards 350 nanometers at a SME of 4 kWh/kg and the mean curling values were also reduced. The electrical percolation threshold increases with SME from about 0.4 wt% to 0.6 wt%.Polycarbonate composites containing multiwalled carbon nanotubes (MWCNTs, 0.2-2.0 wt%) were melt mixed in small scale at different conditions of screw speed and mixing time to vary the specific mechanical energy (SME) input between 0.4 and 4.0 kWh/kg. Next to the electrical properties of compression molded plates and the MWCNT macrodispersion also the nanotube length and shape were analyzed. For this, the matrix of the composites with 0.75 wt% MWCNT loading was dissolved and the remaining nanotubes were investigated using TEM. It was found that with increasing SME input the number of remaining CNT agglomerates decreases. The MWCNT length decreased from initially about 1.4 micrometers towards 350 nanometers at a SME of 4 kWh/kg and the mean curling values were also reduced. The electrical percolation threshold increases with SME from about 0.4 wt% to 0.6 wt%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.