Abstract

Mitochondrial membrane fatty acid composition has been proposed to play a role in determining mitochondrial proton leak rate. The purpose of this study was to determine if feeding rats diets with different fatty acid sources produces changes in liver proton leak and H 2O 2 production. Six-month-old male FBNF 1 rats were fed diets with a primary fat source of either corn or fish oil for a 6-month period. As expected, diet manipulations produced substantial differences in mitochondrial fatty acid composition. These changes were most striking for 20:4 n6 and 22:6 n3. However, proton leak and phosphorylation kinetics as well as lipid and protein oxidative damage were not different ( P>0.10) between fish and corn oil groups. Metabolic control analysis, however, did show that control of both substrate oxidation and phosphorylation was shifted away from substrate oxidation reactions to increased control by phosphorylation reactions in fish versus corn oil groups. Increased mitochondrial H 2O 2 production was observed in corn versus fish oil-fed rats when mitochondria were respiring on succinate alone or on either succinate or pyruvate/malate in the presence of antimycin A. These results show that mitochondrial H 2O 2 production and the regulation of oxidative phosphorylation are altered in liver mitochondria from rats consuming diets with either fish or corn oil as the primary lipid source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.