Abstract

The internal overburden movement after coal mining may cause many disasters to the on-site production. It is of great guiding significance for the engineering treatment such as separation layer grouting and gas extraction to master the evolution law of separation layer and fracture in the overburden. Combined with the full-columnar overburden of a certain working face, this study established a number of models using 3DEC simulation software and analyzed the influence of different mining heights and widths on the distribution law of separation layer and fracture after strata movement. The simulation results show that the evolution of separation layer in the overburden after mining roughly consists of three stages, namely, initial generation, reaching peak, and tending to close (stable). The development of the separation layer is positively correlated with the mining height and negatively correlated with the mining width. When the mining height increases from 3 m to 5 m, the peak value of cumulative separation increases from 0.7 m to 2.1 m. On the contrary, when the mining width increases from 250 m to 350 m, the peak value of cumulative separation decreases from 2.8 m to 1.1 m. The pre-bearing stress concentration will be formed in the mining process of the working face. The influence of mining width change on the peak of stress concentration is greater than that of mining height change, and the subsidence is mainly affected by mining height. A quantitative analysis method of water-flowing fracture development height was developed by using the penetration height of joint shear displacement. The calculated fracture zone height 117.33 m was in good agreement with the actual measured results 120 m, verifying the validity of this method. These findings are of great reference for mastering the distribution law of separation layer and fracture in the mining overburden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call