Abstract

The possibility to reduce the amount of cutting fluids from machining processes is actively studied by the industrialists and researchers. Minimum quantity lubrication (MQL) is a solution toward cutting fluids reduction. This paper investigates the consequences on friction coefficient induced by the use of MQL. A tribometer is used in order to experimentally simulate the local tribological conditions encountered during machining. As the relative sliding speed increases, a lower amount of oil is deposited on the rough surfaces. Depending on the MQL operating conditions and sliding velocities, it is plausible to reach starvation by leaving the real rough contact partly dry. A model computing a starvation percentage by filling an estimated oil amount in a deformed topography correlates with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.