Abstract

In this paper, theoretical calculations were conducted to determine the coefficient of thermal expansion (CTE) based on the effective medium approach using Green’s function method. The influences of microstructural features were investigated, including volume fraction, aspect ratio, and the orientation of graphene fillers. Calculated results demonstrated strong anisotropy of CTE when all graphene sheets in the composite were aligned in the in-plane direction due to the large difference between the elastic moduli of the graphene and epoxy. The in-plane CTE in the graphene/epoxy composite can be effectively reduced with small additions of graphene additive. Orientation dispersion among the graphene fillers significantly decreases the anisotropy of CTE. Accounting for the influences of all microstructural features, simulation results closely align with current experimental results. This work will provide a general guideline and a solid foundation for the optimal design and preparation of graphene/polymer composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.