Abstract

CAD/CAM-generated resin-based composite crowns have been proposed as an inexpensive alternative to conventional crowns. However, concerns have been raised about crown loosening in clinical use. Therefore, the present in vitro study aimed to evaluate the influence of thermal and mechanical cycling (TC and MC) on retentive strength of CAD/CAM resin-based crowns in relation to microscale expansion and contraction caused by fatigue. Eighty standardized dies were produced using a resin-based composite material. Crowns were milled from resin-based composite (n = 40) and glass-ceramic blocks (n = 40; control) using a dental CAD/CAM system. The crowns bonded to the dies were subjected to TC (temperature: 5 and 55 °C, cycles: 50,000) and MC (load: 200 N, cycles: 1.2 million). After fatigue treatment, retentive strength of the crowns was evaluated by a crown pull-off test at a crosshead speed of 1 mm/min. Coefficient of thermal expansion (CTE) and modulus of elasticity (E-modulus) of each material were also analyzed to estimate the microscale expansion and contraction during TC and MC. TC and MC significantly reduced the retentive strength of the CAD/CAM resin-based crowns whereas that of the CAD/CAM ceramic crowns was only affected by TC. In addition, the resin-based crowns showed a higher number of crown loosening during TC than the ceramic crowns. Analyses of CTE and E-modulus indicated that the resin-based crowns would be more deformed during TC and MC than the ceramic crowns. The present study demonstrated that the resistance of crowns to microscale expansion and contraction caused by thermal and mechanical fatigue would play an important role in maintaining retentive strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.