Abstract
A central aim in ecological research is to improve understanding of the interactions between species and their environments; these improvements will prove crucial in predicting the ecological consequences of climate change for isolated montane species, such as Royle's pika. We studied the influence of habitat microclimatic conditions on the activity patterns of Royle's pika in the period May to August (2008 to 2011) within six permanently marked plots deployed along an attitudinal gradient (2,900 to 3,680 m) within the Kedarnath Wildlife Sanctuary, India. Pika activity was recorded through direct observation during the period from 0600 to 1900 on each observation day and normalised as the percentage of individuals observed in an hourly interval relative to the maximum number of individuals sighted in a particular plot during the observation day. Microclimatic data in pika habitat were recorded across the altitudinal zones using automatic data loggers, a soil thermometer and a hygrometer deployed within the site during each observation interval. Using linear mixed effect models, we simulated pika activity as the number of active versus inactive individuals with logical alternate combinations of habitat microclimatic parameters, altitudinal zone and daily time interval. The pika had a bimodal activity pattern with high activity in the morning and evening hours and low activity during midday hours. The best fit candidate model demonstrated that pika activity increased with ambient humidity and decreased with increasing temperature. The reduction of activity due to an increase in temperature was significantly higher in the subalpine zone (2,900 to 3,200 m) than in the alpine zone (3,400 to 3,680 m). Thus, Royle's pika avoids heat stress by reducing activity during warm midday hours and taking shelter in microclimatically favourable cooler talus habitat. We showed that changes in habitat microclimatic conditions (specifically, increases in temperature) might significantly restrict Royle's pika daytime activity.
Highlights
A central aim in ecological research is to improve understanding of the interactions between species and their environments; these improvements will prove crucial in predicting the ecological consequences of climate change for isolated montane species, such as Royle's pika
A pika habitat in the timberline zone was found in rock talus with rolling boulders and embedded rocks interspersed with mixed herbaceous meadows
Maximum activity was observed in early morning and during the evening, while activity dipped to its lowest level in midday hours
Summary
A central aim in ecological research is to improve understanding of the interactions between species and their environments; these improvements will prove crucial in predicting the ecological consequences of climate change for isolated montane species, such as Royle's pika. We studied the influence of habitat microclimatic conditions on the activity patterns of Royle's pika in the period May to August (2008 to 2011) within six permanently marked plots deployed along an attitudinal gradient (2,900 to 3,680 m) within the Kedarnath Wildlife Sanctuary, India. Cold-adapted alpine species are more vulnerable to climate change than those in tropical or temperate environments. Detailed quantitative baseline ecological studies are needed for improved understanding of direct and indirect effects of climate change on alpine species and for the design of effective conservation measures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.