Abstract
ObjectiveThe goal of the study was to determine whether microbubble charge influences the microvascular retention of microbubble contrast agents. BackgroundInteractions between serum proteins and lipid membranes are greater with anionic compared with neutral membranes. These interactions may influence the microvascular behavior of anionic lipid microbubbles. MethodsIntravital microscopy of the cremaster muscle was performed in six wild-type mice and three C3-deficient mice during intravenous injection of lipid-shelled microbubbles with either a neutral or a negative charge. Both agents were prepared with and without a protective surface layer of polyethyleneglycol (PEG). Complement attachment to microbubbles was assessed by flow cytometry with flourescein isothiocyanate-conjugated anti-C3b monoclonal antibody. Myocardial contrast echocardiography was performed in six dogs to assess pulmonary and myocardial retention of microbubbles. ResultsSize-independent capillary retention of microbubbles, occurring for a few seconds to >10 min, was frequently observed with anionic, but rarely with neutral, microbubbles (4.3 ± 0.3 vs. 0.4 ± 0.1 mm−3, p < 0.01). Anionic microbubble retention was reduced by 70% by surface PEG and was also markedly reduced in C3-deficient mice (1.4 ± 0.1 mm−3, p < 0.05 vs. wild-type). Flow cytometry demonstrated complement attachment to only anionic microbubbles. Contrast echocardiography indicated both pulmonary and myocardial retention of only anionic microbubbles, the latter evidenced by persistent opacification >10 min after bolus intravenous injection. ConclusionsLipid microbubbles with a net negative charge can be retained within capillaries via complement-mediated attachment to endothelium. This property may be useful for the development of ultrasound contrast agents that can be imaged late after venous injection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.