Abstract

Surface micro-texturing involves creating microscopic pits or textures, serving as lubricant reservoirs to enhance lubrication distribution, potentially reducing friction and wear. This study specifically delves into the influence of varied depth patterns of pits on the operational performance of textured rolling bearings under severe lubrication conditions. Five distinct patterns with a fixed pit diameter (250 µm) and different depth variations (concave, decreasing, increasing, convex, and horizontal) were introduced on the shaft rings of cylindrical roller thrust bearings using the laser marking method. Wear tests were conducted under starved lubrication condition. Wear loss and signal analysis highlight the profound effect of depth variations, whereby bearings with shallow pits near the outer side of their working surfaces exhibit longer lubrication times, improved tribological performance, and enhanced vibration characteristics. Notably, the convex pattern stands out for providing comprehensive and favorable tribological and vibration properties. This research contributes valuable insights for the optimal design of micro-textures for rolling bearings, paving the way for enhanced efficiency and reliability in mechanical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call