Abstract

Al-Cu-Mg high-strength alloys are widely used in industrial production because of their excellent mechanical performance and good machining properties. In this study, first-principles calculations based on density functional theory were carried out to investigate the influence of Mg doping on the structural stability and mechanical properties of the Al2Cu (θ) precipitated phase in Al-Cu-Mg alloys. The results show that the structural stability, electronic structure, bulk modulus, mechanical anisotropy, and thermodynamic properties of the precipitated Al2CuMgX phase change with the concentration of Mg doping (X = 2, 4, 6, and 8). The cohesive energy calculation and electronic structure analysis show that Al2CuMg6 has a high structural stability. The criterion based on elastic constants indicates that Al2CuMg2, Al2CuMg4, and Al2CuMg8 have a brittle tendency and show strong anisotropy of mechanical properties, while Al2CuMg6 shows better comprehensive mechanical properties. The thermodynamic analysis results based on the quasi-harmonic Debye model show that the Al2CuMg6 precipitated phase has good stability at high temperatures and pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call