Abstract
This paper presents experimental study results of a direct injection engine fed with methanol steam reforming products and devised to work with a high-pressure thermochemical recuperation system. The influence of injection pressure and timing on heat release rate, fuel mass fraction burned, cycle-to-cycle variation, pollutant emissions, efficiency and exhaust gas energy available for methanol reforming is investigated and analyzed. Effect of injector flow area on the required injection pressure is discussed. End-of-injection (EOI) timing is shown to be the main influencing factor on engine efficiency and pollutant emissions. The obtained results indicate that there is a range of EOI timing where indicated efficiency is almost constant and NOx emissions drop by a factor of 2.5. Particle number emissions can be reduced in this range by a factor of 4. We showed that engine exhaust gas possesses enough energy to sustain endothermic reforming reactions up to excess air ratio of 2.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.