Abstract

Proton exchange membrane fuel cells [PEMFC] have become highly attractive for stationary as well as mobile energy applications due to their good efficiency compact cell design and zero emissions. PEM fuel cells mainly consist of anode and cathode containing platinum/platinum alloy electrocatalysts and Nafion membrane as the electrolyte. They operate on hydrogen fuel, which is generally produced by reforming of hydrocarbons, alcohols such as methanol and may contain large amounts of impurities such as methanol, carbon dioxide, trace amounts of carbon monoxide, etc. The studies on the effect of methanol impurity in hydrogen on fuel cell performance and methods of mitigation of poisoning are very important for the commercialization of fuel cells and are described in a limited number of papers only. In this paper, we present the studies on the influence of methanol impurity in hydrogen for the PEM fuel cells. The effect of various parameters such as methanol concentration, cell voltage, current density, exposure time, reversibility, operating temperature, etc. on the cell performances was investigated using pure hydrogen. Various methods of methanol poisoning mitigation were also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call