Abstract

Diamond films were deposited on high-speed steel substrates by hot filament chemical vapor deposition (HFCVD) method. To minimize the early formation of graphite and to enhance the diamond film adhesion, a WC-Co coating was used as an interlayer on the steel substrates by high velocity oxy-fuel spraying. The effects of methane content on nucleation, quality, residual stress and adhesion of diamond films were investigated. The results indicate that the increasing methane content leads to the increase in nucleation density, residual stress, the degradation of quality and adhesion of diamond films. Diamond films deposited on high-speed steel (HSS) substrate with a WC-Co interlayer exhibit high nucleation density and good adhesion under the condition of the methane content initially set to be a higher value (4%, volume fraction) for 30 min, and then reduced to 2% for subsequent growth at pressure of 3 kPa and substrate temperature of 800 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call