Abstract

This study examines the effectiveness of cysteine as an eco-friendly in inhibiting the corrosion of low-carbon steel in a sulfuric acid solution and the impact of adding various metal ions (Cu2+, Ni2+, and Co2+) to the media. All solutions were prepared using distilled water. The results show that 5 mM cysteine inhibits corrosion (IE = 65%), increasing to 93.5% in the presence of 4×10-5 M Cu2+ ions, but decreasing with the addition of Co2+ or Ni2+ ions. The inhibitive action of cysteine-Cu is the best one and that may be attributed to the formation of a protective coating on the metal surface, which prevents chemical reactions in an aggressive environment. Moreover, the DFT calculation found that the adsorption energy increased from −17.2 to −97.7 and −104.6 kcal/mol in the case of cysteine, Cysteine-Cu SAM, and Cysteine-Cu(II) Salt and the closest atom to the surface reduced from 2.576 to 2.128 and 2.146 Å which indicates Cysteine-Cu better adhere to the surface. SEM, XRD, and XPS were used to analyze the formation of the protective layer. This has the potential to develop new and more effective corrosion inhibitors for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call