Abstract
It is well known that the rate and efficiency of photon upconversion via triplet–triplet annihilation (TTA-UC) are strongly dependent on the energetics of the sensitizer and acceptor molecules. In rigid scaffoldings, where the dyes are fixed in position, the structure and orientation of the molecules also presumably play an important role. We investigate how the variation in the position of the phosphonate surface binding group on 9,10-diphenylanthracene influences TTA-UC in self-assembled bilayers on ZrO2. Interestingly, meta- or para-substitution of the anthracene dye with phosphonate groups had minimal influence on their energetics, surface loadings, or sensitizer to acceptor triplet energy transfer efficiency. However, the TTA-UC efficiency is three times lower with the meta-substituted dye, which is attributed to its threefold decrease in its triplet excited state lifetime relative to the para-substituted dye.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.