Abstract

This paper presents the effect of different types of additives on the morphology and mechanical performance of polypropylene (PP). Three different types of nanoparticles, containing mesoporous silica (MCM-41), Hydroxyapatite (HA) and the composite of MCM-41 and HA (MH) were used. Nanocomposites containing PP, 3wt.% of maleic anhydride grafted polypropylene (PP-g-MA) and 3wt.% of different nanoparticles were prepared using the melt-compounding technique in a twin-screw extruder. The bulk mechanical response of the nanocomposites such as tensile, flexural and Izod impact properties were studied. The results of mechanical tests show that at the same nanomaterial content, all the nanofillers cause better tensile, flexural and impact strength than neat PP. The MH nanoparticle improves the mechanical properties of PP, better than the other nanoparticles because this nanofiller contains good properties of both MCM-41 and HA nanoparticles in itself. In order to investigate the effect of foam agent on the mechanical properties of neat PP and nanocomposites based on PP, inorganic azodicarboxamide was added to the aforementioned mixtures as chemical blowing agent and the foamed specimens were resulted using the melt-compounding technique. The results reveal that addition of foam agent to mixtures, leads to increase the flexural characteristics of samples, but the tensile properties and impact strength decrease. Scanning electron microscopy (SEM) was used to assess the fracture surface morphology and the dispersion of the nanoparticles. X ray diffractometry (XRD) was used to examine the intercalation effect on the nanocomposites. The observations show that the nanomaterials were well dispersed in the polymer matrix and the enhancement of the interface between the matrix and fillers was obtained by the incorporation of MH, MCM-41 and HA nanoparticles into PP matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.