Abstract

The mesophilic reactor (MR) exhibited advantages in biogas production and performance stability over thermophilic reactor (TR) during the long-term anaerobic digestion (AD) of food waste (FW) with stepwise organic loading rate elevating. It was interesting to explore the mechanism causing the divergences in performances between these two reactors. The microbial activity was compared on day 110 when TR began to deteriorate. The results show that MR had significantly higher specific acetoclastic methanogenic activities (SAMA) and specific propionate and butyrate oxidative activities (SPOA and SBOA) than TR. The SAMA, SPOA and SBOA in TR were only 50.3%, 18.6% and 46.4% of those values in MR, respectively. Remarkably, the specific hydrogenotrophic methanogenic activity of 15.5±2.1, 15.7±4.6 mmol CH4·L-1 original slurry·d-1 in MR and TR was comparative with insignificant difference, which indicates that the microbial activity in TR had been inhibited widely apart from the hydrogenotrophic methanogenesis. Additionally, many particles with the diameters of 1-2 mm were observed to form in MR and identified as complexes of calcium and long chain fatty acids (LCFAs). The formation of calcium crystallization might alleviate the inhibition of LCFAs during AD of FW, which further supports the better performance in MR than TR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.