Abstract
The objectives of this experiment were to test the efficacy of a mechanical string thinner (Darwin PT-250; Fruit-Tec, Deggenhauserertal, Germany) on apple and to identify an optimal range of thinning severity as influenced by spindle rotation speed. Trials were conducted in 2010 and 2011 at the Pennsylvania State University Fruit Research and Extension Center in Biglerville, PA, on five-year-old ‘Buckeye Gala’/M.9 apple trees that were trained to tall spindle. A preliminary trail on five-year-old ‘Cripps Pink’/M.9 was conducted to determine the relationship between string number and thinning severity. As the number of strings increased, the level of thinning severity increased. A range of spindle speeds (0 to 300 rpm) was applied to the same trees for two consecutive years. As spindle speed increased, blossom density (blossom clusters per limb cross-sectional area) was reduced as was the number of blossoms per spur. In 2010, leaf area per spur was reduced 9% to 45%. In 2011, the fastest spindle speed reduced leaf area per spur 20%. Although increased spindle speed reduced cropload, injury to spur leaves may have inhibited increases in fruit size. The largest gain in fruit weight was 28 g (300 rpm) compared with the control. In both years, the most severe thinning treatments reduced yield by more than 50%. There was no relationship between spindle speed and return bloom. Severe thinning treatments (240 to 300 rpm) caused significant reductions in spur leaf area, yield, and fruit calcium and did not improve fruit size or return bloom. Spindle speeds of 180 and 210 rpm provided the best overall thinning response and minimized injury to spur leaves, but cropload reduction was insufficient in years of heavy fruit set. Therefore, mechanical blossom thinning treatments should be supplemented with other thinning methods. Mechanical string thinning may be a viable treatment in organic apple production, where use of chemical thinners is limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.