Abstract

ABSTRACTThis paper reports on the influence of the field-effect mobility of transistors based on regioregular head-to-tail coupled poly (3-hexylthiophene) by mechanically induced alignment on differently treated insulator surfaces. It is demonstrated that on hydrophilic insulator surfaces mechanical rubbing of the polyhexylthiophene layers perpendicular to the source drain contacts can increase the field-effect mobility whereas rubbing parallel to the source drain contacts results in a reduced mobility. In contrast it is shown that in transistors with a hydrophobic insulator surfaces, which show much higher mobilities no further improvement can be achieved. The rubbing induced polymer alignment is deduced from optically polarized transmission spectroscopy on polymer-coated quartz glass substrates. The different behavior of the field-effect mobility will be explained in terms of different degrees of crystallinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call