Abstract

The elastic and large-deformation mechanical behavior of 4 materials with known clinical performance was examined and correlated with the wear behavior in a hip simulator. Acetabular liners of a commercially available design were machined from ultra-high molecular weight polyethylene (UHMWPE), high-density polyethylene (HDPE), polytetrafluoroethylene (PTFE), and polyacetal and wear tested in a multidirectional hip joint simulator. Elastic and large-deformation mechanical behavior was directly measured from the wear-tested liners using the small punch test. The finite element method was used to compute elastic modulus from the measured small punch test initial stiffness, and the contact stress for the liners was calculated using the theory of elasticity solution. Positive, statistically significant correlations were observed between the hip simulator wear rate and the initial peak load, ultimate load, and work to failure from the small punch test. Negative correlations were observed between the wear rate and the elastic modulus and contact stress. The results of this study support the hypothesis that the large-deformation mechanical behavior of a polymer plays a greater role in the wear mechanisms prevalent in total hip replacements than the elastic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.