Abstract

The aim of this study was to analyze zinc (Zn), calcium (Ca) and phosphorus (P) contents in milk and the lactational performance in rats fed different Ca levels. Female Wistar rats were fed during pregnancy and lactation with experimental diets containing 20% protein and high (0.90%, HCa), normal (0.60%, NCa) or low (0.20%, LCa) Ca levels. Milk samples were collected after 15 days to determine the milk mineral composition. Pup weight was recorded from birth to weaning (litter size: 6–8 pups) to determine weight gain and calculate milk production. At delivery there were no significant differences in the body weight of the pups between the groups, but at day 15, the LCa group showed lower values than both NCa and HCa groups ( p < 0.05 ) . The weight gain of the LCa group was significantly lower than of the HCa and NCa groups, between delivery and day 5 ( p < 0.05 ) . This reduced rate of weight gain led to the LCa group reaching weaning weight later than the other groups. Milk production (g/pup/day) was significantly lower when dams were fed the LCa than the NCa and HCa diets ( p < 0.05 ) . There were no significant differences among the groups in milk Ca, P and Zn levels and Ca/P ratio. The body mineral composition of the pups at birth did not differ between the groups; at weaning, however, both LCa and HCa groups had lower element contents than the NCa group ( p < 0.05 ) . In conclusion, dams fed with a diet containing low Ca levels produced smaller volumes of milk and their pups reached weaning weights later than the other groups. As the milk mineral composition was not affected, it can be hypothesized that in dams fed low dietary Ca, the smaller milk yield might have been a way of maintaining milk quality. High Ca levels affected neither pregnancy outcome nor lactational performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.