Abstract
In this study, the influence of material uncertainty on the vibration characteristics of the cracked functionally graded materials (FGM) plates is investigated. Extended stochastic finite element formulation is implemented to model the cracked FGM plate with material uncertainty using higher-order shear deformation theory (HSDT). The level set function is employed to track the crack in the FGM domain. The concept of partition of unity technique is implemented to enrich the primary variable with additional functions. The gradation of the material properties along the thickness direction is done using the power-law distribution. The first-order perturbation technique (FOPT) is incorporated in the methodology for stochastic vibration analysis. The convergence and validation study has been performed to verify the efficacy and accuracy of the formulation. Numerical results are obtained to show the effects of various influential parameters like crack length, gradient index, thickness ratio, and boundary condition on the covariance of the square of natural frequencies. The presented computational approach is accurate, efficient, and robust enough to investigate the vibration response of cracked FGM plates with material randomness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.