Abstract
Evaporative cooling is an important method for controlling the temperature of micro devices, and heat and mass transfer from the microdroplets in the evaporation process directly affect the cooling performance. In order to study the droplet heat and mass transfer law in the droplet evaporation process, this paper builds a coupled thermal mass model of droplet evaporation and tests the accuracy of the numerical model through theoretical results. In order to study the influence of the Marangoni effect on the droplet evaporation process and the effects of different initial droplet radius and ambient temperature on the temperature and flow, fields within the droplet are compared. From this result, it can be seen that the droplet volume is 20 μL, and the maximum flow velocity in the droplet is 0.34 mm/s, without taking into account the Marangoni effect. When the Marangoni effect is taken into account, the maximum flow velocity increases by almost 100 times. The Marangoni effect can cause the convection in the droplet to change direction, and the formation of the Marangoni flow may affect the temperature distribution within the droplet, thereby increasing the evaporation efficiency by 2.5%. The evaporation process will increase the velocity of the air close to the surface of the liquid, but the increase in air velocity close to the liquid surface is not sufficient to reinforce evaporation. There is a non-linear relationship between increasing ambient temperature and increasing evaporation efficiency. For every 5 °C increase in ambient temperature, the maximum increase in the rate of evaporation is approximately 22.7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.