Abstract
AbstractThe current research paper investigates the viscous dissipation, influence of Marangoni convection (MC), and the variable fluid viscosity of nanofluid flow on stretching surfaces. The flow system takes into account variable viscosity with the impact of MC. Furthermore, velocity and temperature slips at the stretching surface are also considered in this study. To convert a collection of NLPDE to a NODE, we applied appropriate transformations. We utilize Homotopy analysis method (HAM) to solve this set of equations. The effects of temperature, tangential, and radial velocities on numerical perceptions involving Marangoni convection, nanoparticle volume friction, porosity parameter, Eckert number (EN) and heat source input factors are shown. A physical description is used to simulate and evaluate the structures of flow features such as velocity and temperature profiles in response to changes in developing factors. Based on the given result, we can observe that the temperature profile increases as EN and the heat source parameter increase, and that the velocity profile decreases as MC increases and increases with the porosity parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.