Abstract

This paper presents the influence of production parameters and analysis of ZrC coatings production on Monel®400 substrate. The effects of laser beam power on the microstructure, chemical composition, corrosion resistance and on selected mechanical properties such as microhardness and wear resistance were investigated. The investigation consisted of the production of composite coatings using laser processing of pre-coatings made in paste form on a nickel based alloy (Monel®400). In the studies, a diode laser with a rated power of 3 kW was used. The laser processing was carried out using a constant laser beam scanning speed of 3 m/min and three different laser beam powers: 350, 450, 550 W. It was found that it is possible to form composite coatings on a nickel-copper alloy substrate, where the matrix is made of nickel-copper based alloy from substrate and the reinforcing phase is ZrC. Investigation was carried out for single and multiple laser tracks. Based on the studies it was found that reinforcing phase content decreased as laser beam power increased. A similar relationship was found for all the other investigated properties such as microhardness, corrosion resistance, and wear resistance. As laser beam power increases, the microhardness of the Ni-Cu-based matrix decreases. However, is still greater than for the Monel®400 substrate. It was found that the amount of hard carbide phases in the Ni-Cu-based matrix affects the corrosion and wear resistance of the coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call