Abstract

The influence of Mn-ion dissolved in electrolyte solution on the electrochemical properties of graphite negative-electrodes was investigated using edge plane highly oriented pyrolytic graphite (HOPG) by cyclic voltammetry, electrochemical impedance spectroscopy, and in situ atomic force microscopy (AFM). Redox currents due to intercalation and de-intercalation reactions of Li-ion at an edge plane HOPG electrode significantly decreased with an increase in the cycle number. Both the surface film and interfacial Li-ion transfer resistances remarkably increased in the presence of Mn-ion, and particularly at potentials below 0.6 V, indicating that some irreversible reactions should occur. X-ray photoelectron spectra indicate that Mn metal was deposited on the edge plane HOPG, and then oxidized into divalent (or higher) Mn under open-circuit conditions. These results suggest that the deposited Mn metal should be oxidized to decompose the electrolyte itself and/or the original surface film reductively. Electrochemical AFM observation showed that very fine particles smaller than 0.1 μm were formed on edge plane HOPG in the initial potential cycle in electrolyte containing Mn-ion, and then larger particles were observed after further potential cycles. The effects of film-forming additives on the deposition of Mn on the edge plane HOPG electrode were also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.