Abstract

We investigate an antiferromagnet/ferromagnet/superconductor/ferromagnet (AF/F/S/F) spin-valve system with nanoscopic scale, described by Usadel equations in the dirty limit. The results show that the superconducting characteristics in the system strongly depend not only on the mutual orientation and thickness of two ferromagnetic layers, but also on the interface transparency and the magnetic scattering. The superconducting critical temperature can exhibit three types of characteristic behaviors with a variation of interface transparency. In particular, the reentrance phenomenon of the superconductivity is observed at the interface transparency γBξn/ξf = 7.1, while the reentrance phenomenon disappears in the presence of magnetic scattering. In addition, it is also found that the introduction of magnetic scattering results in the decrease of the spin-valve effect. The obtained results could provide some practical recommendations for the spin-valve effect in experimental observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.