Abstract

From results of spectral (in Ba II λ 455.4-nm line) and spectropolarimetric (in Fe I λλ 1564.3–1565.8-nm lines) observations of the active region (an isolated faculae at the solar disk center) with the German vacuum tower telescope (VTT) at the Institute of Astrophysics on the Canary Islands, the peculiarities of propagation of five-minute oscillations from the photosphere base (h = 0 km) to the lower chromosphere (h = 650 km) were investigated. At the height of the continuum formation (h = 0 km), the nature of wave propagation in the active region does not differ much from that in the quiet region: 80–90% of the investigated areas are occupied by waves moving up and down. In the lower chromosphere (h = 650 km), differences in the behavior of the waves are fundamental. In a quiet area, the waves become standing for 90% of the cases. In contrast to this, in the presence of moderate and strong magnetic fields (B = 30–180 mT), in 47% of the cases, the waves are running upward, which gives the principal possibility to heat the active region. The investigations revealed the presence of the waves in the active region, for which the phase shift ΦT,V of the temperature and velocity oscillations is between −90° and 0°. These waves cannot propagate in a quiet atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call