Abstract

The unsteady two-fluid blood flow model in an artery with mild stenosis is considered by taking into account of effects of both heat transfer and magnetic field. Such a combination has not been reported in the literature of blood flow. The effects of plasma layer thickness, magnetic field, radiation parameter, thermal conductivity and viscosity ratio on flow variables are discussed and depicted graphically. The phase lag between pressure gradient and flow variables has been predicted and the effects of magnetic and radiation parameters, thermal conductivity, plasma layer thickness and Grashof number on the phase lag are brought out which form new information that are, for the first time, added to the literature. It has been pointed out here that the temperature and shear stress (or wall shear stress) decrease with increasing of plasma layer thickness. The flow resistance decreases with the increase in Grashof number and plasma layer thickness. Hence, the existence of the peripheral plasma layer and the pivotal role of Grashof number could be useful for the functions of the diseased arterial system and hence it is concluded that the present study is believed to yield some good improvement over two-fluid models discussed in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call