Abstract

This paper highlights the relationship between changes in the electrochemical properties vs grinding duration of mixed nanosilica and nanoalumina powders. The dependence of the electrochemical characteristics on structural and morphological changes in the nanocomposite powder has been elucidated. A study of the electrochemical characteristics was performed in galvanostatic and potentiodynamic modes. Scanning electron spectroscopy (SEM), X-ray diffraction analysis (XRD) and ultra-soft X-ray emission spectroscopy (USXES) were used to determine the grinding duration effect on the structural and morphological characteristics. It have been found that as a result of increasing duration processing, the composite is compacted due to O-Opπ-interaction between surface atoms of nanoparticles. From the results of electrochemical studies, it has been found that the changes in specific structural features lead to changes in the discharge capacities of lithium power sources. Namely, an increase in grinding time to 5 min leads to increase in charge capacity of first cycle and capacity after 50 cycles. However, with increasing grinding duration to 10, 15 and 20 min is accompanied by a decrease in the charge state of oxygen, specific surface area and increasing of coherent region scattering that lead to a decrease in the discharge capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call