Abstract

Non-isothermal crystallization kinetics of polypropylene (PP), m-isopropenyl-α,α-dimethyl-benzyl isocyanate grafted PP (PP-g-m-TMI), and styrene(St), as comonomer, together with m-TMI grafted PP (PP-g-(St-m-TMI)) was investigated by using differential scanning calorimetry (DSC) under different cooling rates. The crystallization rates of all samples increased with increasing cooling rate. The relation of the half time of crystallization (t1/2) of the three samples, t1/2(PP-g-(St-m-TMI)) < t1/2(PP-g-m-TMI) < t1/2(PP), implying the introduction of St could effectively improve the degree of grafting of m-TMI, resulting in crystallization temperature increased, and the crystallization rate was the fastest. Three methods, namely, the Avrami, the Ozawa, and the Mo, were used to describe the crystallization process of the three samples under non-isothermal conditions. The Avrami and Ozawa neglected the secondary crystallization that follows primary crystallization. The Mo method can successfully describe the overall non-isothermal crystallization process of all the samples. It has been found that the F(T)(PP-g-(St-m-TMI)) < F(T)(PP-g-m-TMI) < F(T)(PP), also meaning that the crystallization rate of PP-g-(St-m-TMI) and PP-g-m-TMI were faster than that of PP. The activation energy (ΔE) for non-isothermal crystallization of all samples was determined by using the Kissinger method. The result showed that the lower value of ΔE for crystallization obtained for PP-g-m-TMI and PP-g-(St-m-TMI) confirmed the nucleating effect of St and m-TMI on crystallization of PP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call