Abstract

Breath-hold divers train and compete in maximal apnea performance. Glossopharyngeal inhalation (GI) is commonly used to increase lung volume above vital capacity (VC) prior to apnea. We investigated the hypothesis that this practice would increase apnea performance and relaxed airway pressure. Seven well-trained breath-hold divers performed maximal bouts of apnea at three different lung volumes (85% VC, VC and VC + GI) both at rest (dry static apnea) and during underwater swimming (dynamic apnea). Heart rate, apnea time and end tidal PCO(2) and PO(2) (P (ET) CO(2) and P (ET) O(2)) were recorded. In addition, relaxed airway pressure was measured after GI. Maximal GI increased lung volume by 1.59+/-0.57 l above VC and increased relaxed airway pressure to from 3.5+/-0.5 to 8.7+/-1.7 kPa. Dry static apnea time was higher at VC + GI (346+/-46 s) than at VC (309+/-38 s, P<0.05) and 85% VC (297+/-48 s, P<0.01). Likewise, dynamic apnea time was higher at VC + GI (97+/-27 s) than at VC (78+/-14 s, P<0.05) and 85% VC (71+/-17 s, P<0.05). P (ET) O(2) values reached 3.5+/-0.6 kPa at the end of dry static apnea bouts and this was not different from dynamic apnea when taking hydrostatic pressure at swimming depth into account (3.7+/-0.6 kPa, P=0.48). In conclusion, GI increases lung volume, relaxed airway pressure and apnea performance in well-trained breath-hold divers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.