Abstract

While there have been many advances in techniques to synthesize uniform lanthanide-doped upconversion nanoparticles (UCNPs), it is still a challenge to synthesize small (ca. 5 nm) hexagonal phase UCNPs that are also bright. The most common method to obtain strongly emissive UCNPs is to synthesize core–shell structures with a passivating shell coating the luminescent core. This approach normally results in larger NPs (>20 nm) and requires two-step procedures. Here, we report a one-pot synthesis of 4 nm NaLuF4:Gd(37%),Yb(16%),Er(2%) UCNPs, whose colloidal solutions show upconversion luminescence (UCL) visible to the eye. We initially hypothesized that the origin of UCL from such small UCNPs was due to a Gd-rich hexagonal upconverting core containing Yb and Er with a Lu-rich passivating shell. This idea is based on the different nucleation rates of the NaLnF4 NPs. Interestingly, the 4 nm NaLuF4-based UCNPs are in the cubic phase, and subsequently undergo a phase transformation with prolonged heating to form ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call