Abstract
Nonlinear viscoelasticity influenced by an in situ nanocrystallization under constant load compression at the glass transition temperature, Tg, is investigated with a Cu 6 0 Zr 3 0 Ti 1 0 (at %) bulk metallic glass (BMG). The experimental curves showed the characteristics, softening and subsequent recovering phenomena which have been observed in a 'stable' Zr-based BMG and also hardening through whole deformation process due to the in situ nanoprecipitation in the glass matrix. These characteristics are fairly reproduced by the fictive stress model extended by the Johnson-Mehl-Avrami (JMA) equation and mixture rule for respectively expressing influences of the Newtonian viscosity and of Young's modulus and critical stress on volume fraction of the nanoprecipitates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.